Mixpeek Logo
    Schedule Demo
    Text

    Named Entity Recognition

    Identify and extract named entities like people, organizations, and locations

    Note: This playground provides simulated output to showcase functionality. No input data is processed or stored on our servers. Use this demo to explore the feature extractor's capabilities before integrating it into your application.

    Input

    Enter the text you want to process

    The NER model to use. Default: en_core_web_lg

    Minimum confidence threshold for entity detection. Default: 0.8

    Specific entity types to detect. Default: PERSON,ORG,LOC,GPE,DATE,TIME,MONEY,PERCENT,QUANTITY

    Output

    {
    "entities": [
    {
    "text": "John Smith",
    "type": "PERSON",
    "start": 12,
    "end": 22,
    "confidence": 0.98,
    "normalized_text": "John Smith"
    },
    {
    "text": "Microsoft",
    "type": "ORG",
    "start": 33,
    "end": 42,
    "confidence": 0.95,
    "normalized_text": "Microsoft Corporation"
    },
    {
    "text": "Seattle",
    "type": "LOC",
    "start": 50,
    "end": 57,
    "confidence": 0.99,
    "normalized_text": "Seattle, WA"
    }
    ],
    "model": "en_core_web_lg",
    "language": "en",
    "entity_types": [
    "PERSON",
    "ORG",
    "LOC",
    "GPE",
    "DATE",
    "TIME",
    "MONEY",
    "PERCENT",
    "QUANTITY"
    ]
    }