Mixpeek Logo
    Joins

    Multimodal RAG (Evidence-Grounded Generation)

    Retrieval + grouping + LLM generation. The recipe is the retriever config—not the LLM. Enables citations back to source timestamps.

    video
    image
    text
    audio
    Multi-Stage
    67.0K runs
    Deploy Recipe

    Why This Matters

    RAG is just retrieval + external LLM. Mixpeek handles the retrieval infrastructure, you bring the generation model.

    from mixpeek import Mixpeek
    from openai import OpenAI
    mixpeek = Mixpeek(api_key="your-mixpeek-key")
    openai = OpenAI(api_key="your-openai-key")
    # Retrieve context with citations
    context = mixpeek.retrievers.execute(
    retriever_id="rag-retriever",
    inputs={
    "query_text": "How did the product launch go?",
    "return_citations": True
    },
    limit=5
    )
    # Format context with sources
    context_str = "\n".join([
    f"[{i+1}] {doc['text']} (Source: {doc['source_url']} @ {doc['timestamp']})"
    for i, doc in enumerate(context['documents'])
    ])
    # Generate with LLM
    response = openai.chat.completions.create(
    model="gpt-4",
    messages=[
    {"role": "system", "content": f"Context:\n{context_str}"},
    {"role": "user", "content": "Summarize the product launch feedback"}
    ]
    )

    Retrieval Flow

    1

    Semantic search for relevant context

    2

    Rerank by relevance to query

    3
    limit(reduce)

    Top-k most relevant chunks

    Feature Extractors

    Text Embedding

    Extract semantic embeddings from documents, transcripts and text content

    827K runs

    Image Embedding

    Generate visual embeddings for similarity search and clustering

    752K runs

    Video Embedding

    Generate vector embeddings for video content

    610K runs

    Retriever Stages

    feature search

    Search collections using multimodal embeddings

    search

    llm rerank

    Rerank documents using LLM-based relevance scoring

    rank

    limit

    Limit the number of documents returned

    reduce

    Documentation