Multimodal RAG Pipeline
Build a retrieval-augmented generation system that works with text, images, and video. Feed relevant multimodal context to LLMs for grounded responses.
from mixpeek import Mixpeekimport openaiclient = Mixpeek(api_key="YOUR_API_KEY")# 1. Build knowledge basenamespace = client.namespaces.create(name="rag-kb")collection = client.collections.create(namespace_id=namespace.id,name="docs-and-media",extractors=["text-embedding-v2", "image-embedding-v2"],chunk_strategy="semantic")# 2. Ingest your contentclient.buckets.upload(collection_id=collection.id,url="s3://your-bucket/knowledge-base/")# 3. Retrieve + Generatedef rag_query(question: str):# Retrieve relevant contextresults = client.retrievers.execute(retriever_id=retriever.id,query=question,settings={"limit": 5})# Build context from resultscontext = "\n".join([r.content for r in results])# Generate answer with LLMresponse = openai.chat.completions.create(model="gpt-4",messages=[{"role": "system", "content": f"Answer based on this context:\n{context}"},{"role": "user", "content": question}])return response.choices[0].message.content
