Mixpeek Logo
    Dataset

    Scalable Multimodal Processing Engine

    Sharded collections + batch pipelines + manifest tracking. This recipe is operational, not algorithmic—it's about infrastructure.

    video
    image
    audio
    text
    Production
    89.0K runs
    Deploy Recipe

    Why This Matters

    Scale is an infrastructure problem. Mixpeek handles sharding, retries, and idempotency so you can focus on queries, not operations.

    from mixpeek import Mixpeek
    client = Mixpeek(api_key="your-api-key")
    # Create sharded collection for scale
    collection = client.collections.create(
    collection_name="production_media",
    feature_extractor={
    "feature_extractor_name": "multimodal_extractor",
    "version": "v1"
    },
    sharding={
    "enabled": True,
    "strategy": "hash",
    "num_shards": 32
    }
    )
    # Batch ingest from manifest
    manifest = client.manifests.create(
    manifest_name="q4_uploads",
    source_uri="s3://bucket/manifest.json"
    )
    # Process at scale with retries
    job = client.jobs.create(
    collection_id=collection.id,
    manifest_id=manifest.id,
    batch_size=500,
    max_retries=3,
    idempotency_key="q4_uploads_v1"
    )
    # Monitor progress
    status = client.jobs.get_status(job_id=job.id)
    print(f"Processed: {status['completed']}/{status['total']}")

    Feature Extractors

    Image Embedding

    Generate visual embeddings for similarity search and clustering

    752K runs

    Video Embedding

    Generate vector embeddings for video content

    610K runs

    Audio Transcription

    Transcribe audio content to text

    450K runs

    Text Embedding

    Extract semantic embeddings from documents, transcripts and text content

    827K runs

    Retriever Stages

    Documentation