Semantic Join
Bridge extracted content features with business reference data. Join video clips to product catalogs, detected faces to employee directories, or documents to compliance frameworks—all via embedding similarity.
"Find marketing videos featuring products from our electronics catalog with matched SKUs"
Why This Matters
Better search isn't about better embeddings—it's about connecting extracted content to existing business systems. Query by product taxonomy, not embedding distance.
import requestsAPI_URL = "https://api.mixpeek.com"headers = {"Authorization": "Bearer YOUR_API_KEY", "X-Namespace": "your-namespace"}# Create taxonomy to join video content with product catalogtaxonomy = requests.post(f"{API_URL}/v1/taxonomies", headers=headers, json={"taxonomy_name": "product_matcher","taxonomy_type": "flat","retriever_id": "ret_product_search","input_mappings": {"query_embedding": "mixpeek://multimodal_extractor@v1/embedding"},"source_collection": {"collection_id": "col_product_catalog","enrichment_fields": [{"field_path": "metadata.sku", "merge_mode": "enrich"},{"field_path": "metadata.category", "merge_mode": "enrich"}]}}).json()# Apply taxonomy to video collection (semantic join)requests.post(f"{API_URL}/v1/collections/col_marketing_videos/apply-taxonomy",headers=headers,json={"taxonomy_id": taxonomy["taxonomy_id"]})# Search videos - results now include matched product dataresults = requests.post(f"{API_URL}/v1/retrievers/video-search/execute",headers=headers,json={"query": {"text": "product demos"}}).json()for doc in results["documents"]:print(f"Video: {doc['document_id']}")print(f" Matched SKU: {doc.get('metadata.sku', 'N/A')}")print(f" Category: {doc.get('metadata.category', 'N/A')}")
Feature Extractors
Image Embedding
Generate visual embeddings for similarity search and clustering
Video Embedding
Generate vector embeddings for video content
Text Embedding
Extract semantic embeddings from documents, transcripts and text content
Retriever Stages
feature search
Search collections using multimodal embeddings
compose
Compose multiple retriever pipelines together
attribute filter
Filter documents by metadata attributes
