Multimodal AI Training Data Curation at Scale
For ML teams building multimodal models. Curate, annotate, and quality-check training datasets. 10x faster dataset preparation, 40% reduction in labeling costs.
Machine learning teams, AI research labs, and data annotation companies building or fine-tuning multimodal models (vision-language, video understanding, audio-visual)
Creating high-quality multimodal training datasets requires manual curation, annotation, and quality checks that bottleneck model development timelines by months
Ready to implement?
Why Mixpeek
10x faster dataset preparation, 40% reduction in labeling costs through smart pre-annotation and quality filtering, and built-in bias detection for responsible AI development
Overview
Training state-of-the-art multimodal models requires massive, high-quality datasets. This use case shows how Mixpeek accelerates dataset engineering by automating curation, annotation bootstrapping, and quality assurance.
Challenges This Solves
Scale Requirements
Modern models need millions of diverse, high-quality examples
Impact: Dataset creation takes months, delaying model development cycles
Annotation Costs
Human labeling costs $0.10-$1.00 per example for multimodal data
Impact: Training dataset budgets run into hundreds of thousands of dollars
Quality Variance
Raw data contains duplicates, corrupted files, and low-quality examples
Impact: Garbage-in-garbage-out degrades model performance
Distribution Gaps
Datasets skew toward common examples, missing edge cases
Impact: Models fail on underrepresented scenarios in production
Implementation Steps
Mixpeek processes raw multimodal data to automatically curate diverse, balanced datasets, generate initial annotations, identify edge cases, and flag quality issues before expensive human labeling
Ingest Raw Data
Process raw multimodal data for curation
import { Mixpeek } from 'mixpeek';const client = new Mixpeek({ apiKey: process.env.MIXPEEK_API_KEY });// Process raw training dataawait client.buckets.connect({collection_id: 'training-data-raw',bucket_uri: 's3://ml-datasets/raw/',extractors: ['image-embedding', // Visual feature extraction'video-embedding', // Temporal features'audio-embedding', // Audio features'quality-assessment', // Technical quality scoring'duplicate-detection', // Near-duplicate identification'content-classification' // Category distribution],settings: {compute_hashes: true, // For exact deduplicationquality_thresholds: {min_resolution: '224x224',min_audio_bitrate: 128,blur_threshold: 0.3}}});
Curate Balanced Dataset
Select diverse, high-quality training examples
// Curate balanced dataset from raw poolasync function curateDataset(config: {target_size: number;categories: string[];balance_strategy: 'uniform' | 'natural' | 'custom';}) {// Analyze current distributionconst distribution = await client.analytics.getDistribution({collection_id: 'training-data-raw',group_by: 'content_category',filters: {quality_score: { $gte: 0.7 },is_duplicate: false}});// Select diverse examplesconst curated = await client.retrieve({collection_id: 'training-data-raw',query: {type: 'diversity', // Maximize diversityembedding_field: 'image_embedding',target_count: config.target_size},filters: {quality_score: { $gte: 0.7 },is_duplicate: false},balance: {field: 'content_category',strategy: config.balance_strategy,weights: config.categories}});return curated;}
Bootstrap Annotations
Generate initial labels for human review
// Pre-annotate to reduce human labeling effortasync function bootstrapAnnotations(datasetId: string) {const examples = await client.collections.list(datasetId);const annotated = await Promise.all(examples.map(async (ex) => {const predictions = await client.extract({asset_id: ex.id,extractors: ['object-detection', // Bounding boxes'image-captioning', // Text descriptions'scene-classification', // Scene labels'action-recognition' // For video]});return {...ex,bootstrap_annotations: {objects: predictions.objects.filter(o => o.confidence > 0.8),caption: predictions.caption,scene: predictions.scene,actions: predictions.actions,needs_review: predictions.objects.some(o =>o.confidence > 0.5 && o.confidence < 0.8)}};}));// Route high-confidence to auto-approve, uncertain to human reviewreturn {auto_approved: annotated.filter(a => !a.bootstrap_annotations.needs_review),needs_review: annotated.filter(a => a.bootstrap_annotations.needs_review)};}
Detect Bias and Edge Cases
Identify dataset gaps and potential biases
// Analyze dataset for biases and gapsasync function analyzeDatasetHealth(datasetId: string) {const analysis = await client.analytics.getDatasetHealth({collection_id: datasetId,checks: ['demographic_bias', // Face/person representation'geographic_bias', // Location representation'temporal_bias', // Time distribution'quality_distribution', // Quality score spread'embedding_coverage' // Feature space coverage]});// Find underrepresented clustersconst gaps = await client.retrieve({collection_id: 'training-data-raw', // Search broader poolquery: {type: 'gap_fill',reference_collection: datasetId,embedding_field: 'image_embedding',min_distance: 0.5 // Find examples far from current dataset},limit: 1000});return {bias_report: analysis,suggested_additions: gaps,coverage_score: analysis.embedding_coverage};}
Feature Extractors Used
Image Embedding
Generate visual embeddings for similarity search and clustering
Video Embedding
Generate vector embeddings for video content
Audio Embedding
Extract semantic embeddings from audio content for similarity search
Object Detection
Identify and locate objects within images with bounding boxes
Image Captioning
Generate descriptive captions for images automatically
Retriever Stages Used
Expected Outcomes
10x faster from raw data to training-ready dataset
Dataset Preparation Time
40% reduction through smart pre-annotation and filtering
Labeling Costs
25% improvement in model accuracy from better curation
Dataset Quality
15-30% of raw data identified as duplicates and removed
Duplicate Removal
3x more edge cases identified and included in training
Edge Case Coverage
Frequently Asked Questions
Related Resources
Related Comparisons
Ready to Implement This Use Case?
Our team can help you get started with Multimodal AI Training Data Curation at Scale in your organization.
