Mixpeek Logo
    Intermediate
    E-commerce
    10 min read

    Automated Product Attribute Extraction and Tagging

    For e-commerce with 10K+ SKUs. Automate product tagging from images with 90%+ accuracy. Reduce manual tagging by 80% and improve search quality.

    Who It's For

    E-commerce platforms, marketplaces, and dropshippers managing 10K+ SKUs requiring consistent product attributes for search and filtering

    Problem Solved

    Manual product tagging is slow and inconsistent, supplier data has missing or incorrect attributes, and poor tagging results in products hidden from relevant searches

    Why Mixpeek

    90%+ accuracy on attribute detection, 80% reduction in manual tagging effort, and consistent taxonomy across entire catalog regardless of supplier data quality

    Overview

    Product discovery depends on accurate, consistent product attributes. Manual tagging cannot scale to modern catalog sizes, and supplier-provided data is often incomplete or inconsistent. This use case shows how Mixpeek automates product attribute extraction, improving search quality while dramatically reducing manual effort.

    Challenges This Solves

    Manual Tagging Bottlenecks

    Human taggers process 50-100 products per day, creating backlogs for new inventory

    Impact: New products sit unlisted for days/weeks, missing sales windows

    Inconsistent Taxonomy

    Different taggers apply different terms, creating fragmented search facets

    Impact: Filters show overlapping options ("Red" vs "Scarlet"), confusing customers

    Missing Supplier Data

    Dropship and marketplace products arrive with minimal or incorrect attributes

    Impact: 30-50% of products missing key attributes, hidden from filtered searches

    Catalog Scale

    Large catalogs (100K+ SKUs) make comprehensive manual tagging impossible

    Impact: Only featured products receive complete tagging, long-tail inventory underperforms

    Implementation Steps

    Mixpeek analyzes product images using computer vision to automatically detect colors, patterns, styles, materials, and product-specific attributes, generating structured metadata for your catalog

    1

    Define Attribute Taxonomy

    Configure extractors for your product attributes

    // Define attribute extractors
    const attributeConfig = {
    fashion: {
    extractors: [
    'color-primary', 'color-secondary',
    'pattern-type', 'material-detection',
    'style-category', 'season-detection',
    'garment-type', 'neckline-type'
    ]
    },
    home: {
    extractors: [
    'color-primary', 'material-detection',
    'style-category', 'room-type',
    'dimension-estimation'
    ]
    }
    };
    2

    Process Product Images

    Extract attributes from product photography

    async function extractProductAttributes(productId: string, imageUrl: string, category: string) {
    const config = attributeConfig[category];
    const result = await client.extract({
    url: imageUrl,
    extractors: config.extractors
    });
    return {
    product_id: productId,
    colors: {
    primary: result['color-primary'],
    secondary: result['color-secondary']
    },
    pattern: result['pattern-type'],
    material: result['material-detection'],
    style: result['style-category'],
    attributes: result
    };
    }
    3

    Update Product Catalog

    Sync extracted attributes to your product database

    async function updateCatalogAttributes(productId: string, attributes: object) {
    // Update product database
    await db.products.update({
    where: { id: productId },
    data: {
    primary_color: attributes.colors.primary,
    pattern: attributes.pattern,
    material: attributes.material,
    style: attributes.style,
    auto_tagged: true,
    tagged_at: new Date()
    }
    });
    // Update search index
    await searchIndex.update(productId, attributes);
    }
    4

    Implement QA Workflow

    Route low-confidence extractions for human review

    async function processWithQA(productId: string, imageUrl: string, category: string) {
    const attributes = await extractProductAttributes(productId, imageUrl, category);
    // Check confidence scores
    const lowConfidence = Object.entries(attributes)
    .filter(([key, value]) => value.confidence < 0.80);
    if (lowConfidence.length > 0) {
    await queueForReview(productId, lowConfidence);
    return { status: 'pending_review', attributes };
    }
    await updateCatalogAttributes(productId, attributes);
    return { status: 'completed', attributes };
    }

    Expected Outcomes

    80% reduction in manual product tagging effort

    Manual Tagging Reduction

    90%+ accuracy on primary attributes (color, category, style)

    Attribute Accuracy

    100% of products tagged vs 60% with manual-only approach

    Catalog Coverage

    New products listed in minutes vs days

    Time to List

    35% improvement in filter accuracy and search relevance

    Search Quality

    Frequently Asked Questions

    Ready to Implement This Use Case?

    Our team can help you get started with Automated Product Attribute Extraction and Tagging in your organization.