Mixpeek Logo
    Advanced
    Finance
    11 min read

    Visual Document Fraud Detection for Financial Services

    For financial institutions processing 10K+ document submissions daily. Detect fraudulent documents in real-time. 98% detection rate, 0.1% false positive rate.

    Who It's For

    Banks, lenders, and fintech companies who need to verify document authenticity for account opening, loan applications, and identity verification

    Problem Solved

    Fraudulent documents (fake IDs, altered statements, fabricated paystubs) cost financial institutions billions annually. Manual review cannot scale and misses sophisticated forgeries

    Why Mixpeek

    98% fraud detection rate with 0.1% false positives, real-time analysis during application flow, and detection of sophisticated forgeries human reviewers miss

    Overview

    Document fraud is increasingly sophisticated. This use case shows how Mixpeek detects visual and data anomalies that indicate fraudulent financial documents.

    Challenges This Solves

    Sophisticated Forgeries

    Modern tools make convincing fake documents

    Impact: Human reviewers miss well-crafted forgeries

    Volume Pressure

    Thousands of applications requiring verification

    Impact: Thorough manual review impossible at scale

    Customer Experience

    Fraud checks create application friction

    Impact: Legitimate customers abandon due to delays

    Evolving Tactics

    Fraudsters continuously adapt techniques

    Impact: Static rules quickly become obsolete

    Implementation Steps

    Mixpeek analyzes document images for tampering indicators, cross-references data against known patterns, and detects visual anomalies that indicate fraud

    1

    Analyze Document Submissions

    Process documents for fraud indicators

    import { Mixpeek } from 'mixpeek';
    const client = new Mixpeek({ apiKey: process.env.MIXPEEK_API_KEY });
    // Analyze document for fraud indicators
    async function analyzeDocument(documentUrl: string, documentType: string) {
    const analysis = await client.fraud.analyzeDocument({
    url: documentUrl,
    document_type: documentType, // 'drivers_license', 'paystub', 'bank_statement'
    checks: [
    'visual_tampering', // Pixel manipulation, font inconsistencies
    'metadata_analysis', // EXIF data, creation timestamps
    'template_matching', // Compare against known genuine templates
    'data_consistency', // Cross-check extracted data
    'quality_anomalies' // Unusual image artifacts
    ]
    });
    return {
    risk_score: analysis.risk_score, // 0-100
    decision: analysis.decision, // 'approve', 'review', 'reject'
    fraud_indicators: analysis.indicators,
    extracted_data: analysis.extracted_fields,
    confidence: analysis.confidence
    };
    }
    2

    Detect Visual Tampering

    Identify pixel-level manipulation

    // Detailed tampering analysis
    async function detectTampering(documentId: string) {
    const tampering = await client.fraud.detectTampering({
    document_id: documentId,
    analysis_depth: 'comprehensive',
    checks: [
    'copy_paste_detection', // Cloned regions
    'font_consistency', // Mixed fonts indicating edits
    'edge_analysis', // Unnatural edges from cutting
    'compression_artifacts', // Re-saved JPEG artifacts
    'lighting_consistency', // Inconsistent shadows/lighting
    'noise_pattern' // Sensor noise differences
    ]
    });
    return {
    is_tampered: tampering.is_tampered,
    tampered_regions: tampering.regions.map(r => ({
    bounding_box: r.bbox,
    tampering_type: r.type,
    confidence: r.confidence
    })),
    original_areas: tampering.likely_original,
    manipulation_type: tampering.manipulation_category
    };
    }
    3

    Cross-Reference Data

    Verify data consistency across documents

    // Cross-reference data across application documents
    async function crossReferenceApplication(applicationId: string) {
    const documents = await getApplicationDocuments(applicationId);
    const crossCheck = await client.fraud.crossReference({
    documents: documents.map(d => ({
    id: d.id,
    type: d.type,
    extracted_data: d.extracted_fields
    })),
    checks: [
    'name_consistency', // Same name across docs
    'address_consistency', // Address matches
    'date_consistency', // Dates make sense
    'income_plausibility', // Income matches stated employment
    'employer_verification' // Employer exists, info matches
    ]
    });
    return {
    consistency_score: crossCheck.score,
    discrepancies: crossCheck.discrepancies,
    risk_factors: crossCheck.risk_factors,
    verification_status: crossCheck.overall_status
    };
    }
    4

    Real-Time Decision Engine

    Make fraud decisions during application flow

    // Real-time fraud decision during application
    async function getFraudDecision(applicationId: string) {
    const docAnalysis = await analyzeAllDocuments(applicationId);
    const crossRef = await crossReferenceApplication(applicationId);
    const decision = await client.fraud.getDecision({
    application_id: applicationId,
    document_scores: docAnalysis,
    cross_reference: crossRef,
    policy: 'standard_underwriting',
    thresholds: {
    auto_approve: 20, // Risk score below 20
    auto_reject: 80, // Risk score above 80
    manual_review: 'between'
    }
    });
    return {
    decision: decision.action,
    risk_score: decision.composite_score,
    primary_factors: decision.top_risk_factors,
    requires_stepup: decision.step_up_verification,
    processing_time_ms: decision.latency
    };
    }

    Feature Extractors Used

    Retriever Stages Used

    Expected Outcomes

    98% of fraudulent documents detected

    Fraud Detection Rate

    0.1% false positives (vs 2-5% industry average)

    False Positive Rate

    Real-time analysis in <3 seconds per document

    Processing Speed

    75% reduction in document fraud losses

    Fraud Losses

    85% reduction in documents requiring manual review

    Manual Review

    Frequently Asked Questions

    Ready to Implement This Use Case?

    Our team can help you get started with Visual Document Fraud Detection for Financial Services in your organization.