Mixpeek Logo
    Concepts

    Hierarchical Classification

    Assign content to multi-level category hierarchies using embedding-based classification. Define your taxonomy once, then classify new content automatically with confidence scores.

    video
    image
    text
    Multi-Tier
    76.0K runs
    Deploy Recipe

    "Show all videos classified under with "

    Why This Matters

    Taxonomies are organizational infrastructure. Once defined, they enable consistent classification, compliance tagging, and structured navigation across all content.

    import requests
    API_URL = "https://api.mixpeek.com"
    headers = {"Authorization": "Bearer YOUR_API_KEY", "X-Namespace": "your-namespace"}
    # Create hierarchical taxonomy
    taxonomy = requests.post(f"{API_URL}/v1/taxonomies", headers=headers, json={
    "taxonomy_name": "content_classification",
    "taxonomy_type": "hierarchical",
    "retriever_id": "ret_classifier",
    "input_mappings": {
    "query_embedding": "mixpeek://multimodal_extractor@v1/embedding"
    },
    "hierarchy": [
    {
    "node_id": "safe",
    "collection_id": "col_safe_examples",
    "enrichment_fields": ["metadata.category"]
    },
    {
    "node_id": "educational",
    "parent_node_id": "safe",
    "collection_id": "col_educational_examples",
    "enrichment_fields": ["metadata.topic"]
    }
    ]
    }).json()
    # Apply taxonomy to collection
    requests.post(
    f"{API_URL}/v1/collections/col_my_content/apply-taxonomy",
    headers=headers,
    json={"taxonomy_id": taxonomy["taxonomy_id"]}
    )
    # Search within taxonomy categories
    results = requests.post(
    f"{API_URL}/v1/retrievers/taxonomy-search/execute",
    headers=headers,
    json={"query": {"text": "educational tutorial videos"}}
    ).json()
    for doc in results["documents"]:
    print(f"Document: {doc['document_id']}")
    print(f" Category: {doc.get('taxonomy_path', 'N/A')}")

    Feature Extractors

    Image Embedding

    Generate visual embeddings for similarity search and clustering

    752K runs

    Text Embedding

    Extract semantic embeddings from documents, transcripts and text content

    827K runs

    Video Embedding

    Generate vector embeddings for video content

    610K runs

    Retriever Stages

    attribute filter

    Filter documents by metadata attributes

    filter

    sort

    Sort documents by field values

    rank

    Documentation