Semantic Multimodal Search
Unified semantic search across all content types. Query by natural language and retrieve relevant video clips, images, audio segments, and documents based on meaning—not keywords or manual tags.
"Find product demo videos with customer testimonials from Q4 2024"
Why This Matters
The foundation for all retrieval workflows. Semantic understanding across any content type means you can search for concepts, not just exact matches.
import requestsAPI_URL = "https://api.mixpeek.com"headers = {"Authorization": "Bearer YOUR_API_KEY","X-Namespace": "your-namespace"}# Create collection with multimodal extractorcollection = requests.post(f"{API_URL}/v1/collections", headers=headers, json={"collection_name": "media_library","source": {"type": "bucket", "bucket_id": "my-bucket"},"feature_extractor": {"feature_extractor_name": "multimodal_extractor","version": "v1","input_mappings": {"video": "source_video"}}}).json()# Index content from object storagerequests.post(f"{API_URL}/v1/buckets/my-bucket/objects", headers=headers, json={"blobs": [{"property": "source_video", "url": "s3://bucket/video.mp4"}],"metadata": {"category": "demos"}})# Search semantically across all modalitiesresults = requests.post(f"{API_URL}/v1/retrievers/semantic-retriever/execute",headers=headers,json={"query": {"text": "product demo with customer testimonials"}}).json()for doc in results["documents"]:print(f"{doc['document_id']}: {doc['score']:.3f}")
Feature Extractors
Image Embedding
Generate visual embeddings for similarity search and clustering
Video Embedding
Generate vector embeddings for video content
Text Embedding
Extract semantic embeddings from documents, transcripts and text content
Audio Transcription
Transcribe audio content to text
Retriever Stages
feature search
Search collections using multimodal embeddings
attribute filter
Filter documents by metadata attributes
limit
Limit the number of documents returned
